

ANNUAL WATER REPORT VILLAGE OF NAKUSP

2015

TABLE OF CONTENTS

1.0		Introduction	2
2.0		Water Collection, Treatment & Distribution System	2
	2.1	Surface Source Water	2
	2.2	Groundwater Sources	4
3.0		Monitoring & Maintenance	4
	3.1	Water Sampling & Testing	5
	3.2	Operator Certification	6
	3.3	Routine Maintenance	6
4.0		Projects & Improvements - 2015	7
5.0		Challenges & Difficulties - 2015	9
6.0		Water Consumption	10
7.0		Cross Connection Control Program	11
8.0		Emergency Response Plan	11
9.0		Proposed Capital Works/Improvements for 2016	11
Appe	endi	x A – Bacteriological Results	12
Appe	endi	x B – Annual Comprehensive Water Source Analysis	14
Appe	endi	x C – Trihalomethane & Haloacetic Acid Results	19
Appe	endi	x D – Water Consumption Data	20
Appe	endi	x E- Emergency Response Plan Contact List Updated	22

1.0 Introduction:

Under the terms of the Village of Nakusp Operating Permit for the Nakusp Water System, Facility #0211995, as per Section 8 of the *Drinking Water Protection Act*, the Village is required to provide an annual report to the public and users of the water system. This report is to provide a summary of the water system operation, maintenance, upgrades and testing procedures and is submitted to Interior Health.

With the new water treatment plant newly commissioned, most of this year has been spent working out the bugs to find optimum efficiencies. Once this fiscal year is complete, the Village will have an idea of how much it costs to operate and maintain the new system. This will pave the way moving forward.

2.0 Water Collection, Treatment & Distribution System:

The Village water system is comprised of 756 residential connections, 103 Commercial services and 27 Institutional/Industrial services. Currently, the distribution system runs approximately 26.7 kms and has both surface source water and ground well water.

2.1 Surface Source Water:

Surface water sources consist of Halfway Creek, Upper Brouse Creek and Lower Brouse Creek. The piping network consists of 3.5 kms of pipe to the Upper Brouse intake and an additional 3.5 kms to the Halfway intake.

Surface water undergoes course filtration in the Filter Sock Chamber, which houses six perforated PVC pipes covered with mesh filter media (socks). Each pipe is approximately 12" in diameter and 8' long.

Course filtration removes large debris, such as leaves, sticks, pine needles, frogs, etc. These filter socks become clogged, especially during the freshet and require monitoring and cleaning.

Figure 1 Filter Sock Chamber

Figure 2 Micro Hydro Generation Station

Course filtration is not technically considered a treatment process, as fine materials and micro-organisms are not removed, therefore, water from here runs through the micro-hydro generation station to the new water treatment facility.

High pressure in the water main turns the generator, which creates hydro electricity. This is sold to BC Hydro and is fed back into their power grid. The

Village is licensed to produce 50 kilowatts of power.

The new treatment process consists of: membrane ultra-filtration, UV light and chlorine injection. This is a very technical operation, which is classified as a Level II Water Treatment. With the commissioning of the new plant come new "Conditions on Operating Permit", which require much more monitoring and reporting to the province. Once treated, the water is stored in the million gallon reservoir.

Figure 3 Upper Brouse Rd Water Treatment Plant

The Million Gallon Reservoir is covered by a polyvinyl chloride cover to keep out debris and wildlife. Towers and weights around the perimeter allow the cover to move with the water level, Rainfall and precipitation is pumped off the cover regularly to prevent contamination.

The reservoir is 14' deep.

Figure 4 Million Gallon Reservoir

The Village also has a 200,000 gallon reservoir, which stores treated water for the lower grid.

2.2 Groundwater Sources:

The Village currently has two established production wells - Well#1 and Well#2. Both wells are located adjacent to the sports complex and are drawn from the same aquifer. A small amount of chlorine is injected into the discharge line, in order to maintain a residual in the distribution system.

Well#1 (8") consistently produces 30 L/s (330 IGPM), taking the demand off the surface water system in summer, and operating up to 24 hours/day. This flow, combined with the 70 L/s from the surface system (during peak daily demand), provides 95 L/s summer flows, and is adequate for the present Village needs. A single well, however, is at risk to mechanical breakdown.

Well#2 (12"), drilled for redundancy and to provide further flows for growth, has been tested up to 30 L/s (800 IGPM). This well was commissioned with the same pump and motor as Well #1 and, therefore, has the same capacity.

3.0 Monitoring & Maintenance:

In addition to the daily facility checks that are conducted by Utility Operators, the Village has the benefit of a Supervisory Control and Data Acquisition (SCADA) system. This system allows the various facilities to communicate remotely through wireless modem radios, and sensing equipment, enabling the Public

Works operators to log onto the system remotely to view and/or manipulate reservoir levels, well pump operations, turbidity and chlorine levels, and system flows. The system also logs this data into an archive, for reporting purposes. The system is very valuable for allowing operators to manage the water supplies, and view problems on a color graphics screen.

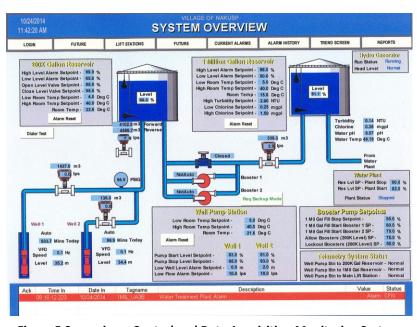


Figure 5 Supervisory Control and Data Acquisition Monitoring System

3.1 Water Sampling & Testing:

The Village Operating Permit requires that water samples be collected weekly and submitted for E. Coli and Total Coliform testing. These tests indicate if contamination of the water system may be present. Samples are collected from several different sites, on a rotational basis.

See Appendix A, pg 12, for 2015 results.

Monthly samples are also submitted for trihalomethane (THM) levels. Trihalomethanes are bi-products of the reaction between chlorine and organic materials.

See Appendix C, pg 19, for 2015 results.

Haloacetic Acid (HAA) testing is performed quarterly. They are another by-product of chlorination. Together, THMs and HAAs provide an indication of the presence of all other disinfection by-products.

See Appendix C, pg 19, for 2015 results.

Monitoring Schedule:

WEEKLY	Microbiological testing at various test sites throughout the distribution system
MONTHLY	 THM testing on a rotational basis throughout the distribution system; Microbiological results reporting; Daily water consumption data; Turbidity monitoring data; UV data Chlorine monitoring data UV sensor reference checks Reporting of source, treatment & distribution system events; Reporting of customer complaints & responses; Outlining major operational activities; Recording of calibration of the chlorine residual analyzer
QUARTERLY	Holoacetic acids testing and reporting
(until baseline has been established – then annually)	 Baseline analysis for potential contaminants of groundwater, including: hydrocarbons (benzene, toluene, ethylbenzene & xylene, light and heavy extractable petroleum hydrocarbons -including polyaromatic hydrocarbons, volatile organic compounds; herbicides and pesticides; metals, nitrates; nitrites and phosphorus; and/or microbiological parameters (coliforms, E. coli); Testing of any specific contaminants of concern
ANNUALLY	 Full comprehensive raw water analysis of each water source Comprehensive Annual Report See Appendix B, pg 14 for 2015 Results

3.2 Operator Certification:

Utilities and Utility Operators are certified through the Environmental Operators Certification Program (EOCP). The new Village WTP is classified as a Water Treatment Level II and Water Distribution Level II Facility, which requires Level II Operators to run it.

At this time, our staff is certified to the following levels:

Employee	Water Treatment	Water Distribution
Warren Leigh	WT-I	WD - II
Gilbert Battersby	-	WD - II
Wesley Coleman	-	WD - I
Terry Flamond	-	WD - I
Bobby Gresiuk	-	WD - III
Rachel George	Operator in Training	Operator in Training

As a Condition on Operator Permit, IHA is requiring that the Village provide Operators that are certified to the level of the plant. Until that time, the Village has retained Nathan Ward (Certified WT II Operator) of Aquadiversities Inc. to oversee operations of the water treatment plant.

3.3 Routine Maintenance:

Daily:

Visual checks are conducted of the various facilities to ensure that the equipment is functioning properly and no problems are evident. Filter Sock cleaning is done, as required. The system is also monitored 24/7 by the SCADA system, which can be accessed remotely by Operators. The system is monitored for: Flow Rate; Total Flow; Free chlorine; chlorine pump settings, pH, temperature; well levels & turbidity.

Weekly: Every Tuesday the Village conducts facility inspections and bacteriological water sample testing at various end-line locations throughout the municipality.

Monthly: Flow rate information is compiled for the Million Gallon Reservoir and the wells. Monthly samples are taken to monitor Trihalomethane levels. Sample results are reported to Interior Health (IHA).

Quarterly: A water sample is collected to monitor for Haloacetic Acids. Sample results are reported to IHA.

Annually: Waterlines are flushed in the Spring and Fall. This removes debris and stale water that may have accumulated in the piping network.

Fire hydrants are also flushed and inspected. Any repairs necessary are made and two new hydrants have been installed each year. All obsolete hydrants have now been replaced.

A valve exercising program is conducted each year to ensure that valves remain in good working order.

Halfway water intake is back-flushed each year or two to remove settled debris and improve flow.

As part of the Village's Cross Connection Control Program, Backflow prevention devices are inspected and tested to prevent any cross contamination of the potable water system.

An annual report is submitted to the Interior Health Authority summarizing the conditions of the Operating Permit.

On-going: Data is constantly monitored to assist with identifying leaks in the system. Repairs are made immediately.

The Million Gallon Reservoir cover is pumped off regularly, to remove any precipitation and debris.

4.0 Projects & Improvements – 2015:

Pressure Reducing Valve (PRV) Station

The Village of Nakusp has been awarded a *New Building Canada Fund Grant* for 2/3 of the cost to install a Pressure Reducing Valve (PRV) Station in the Sleepy Hollow area of town. This station is required to address the long-standing issue of extremely high water pressures, which contribute to the premature degradation of water lines and the high incident of breaks and leaks. The project consists of the replacement of six hundred feet of four inch asbestos/concrete pipe with new six inch plastic waterline; and, the construction of an above-ground PRV station, which is easy to access and eliminates the need for confined space entry. This

construction is currently underway and will decrease the water pressure in the main lines along Shakespeare, Glenbank & Wells Road. The anticipated project completion date is February 2016.

Generator Installation

A back-up generator has been installed at the 200,000 gallon reservoir to address issues with power failures and eliminate the need to hook up a portable genset during outages.

Fire Hydrants

Two new hydrant were installed as part of our Annual Fire Hydrant installation program. This program is now complete, as all Terminal City hydrants have been replaced.

Columbia Basin Trust (CBT) WaterSmart Program:

In 2011 the Village of Nakusp was one of 22 municipalities to sign the Columbia Basin Water Smart Charter. Collectively, the Water Smart communities desired to achieve an overall water usage consumption reduction of 20% by 2015. Nakusp set its own target of 15% reduction, and established their Water Smart Action Plan to outline the path to attaining this goal.

Four objectives were established in the Plan, namely:

- 1) Investigate and address Unaccounted for Water/Leakage;
- 2) Amend the existing OCP Policy regarding underground irrigation systems;
- 3) Implement proven strategies for reducing outdoor residential water demands, and lead by example through wise water use in public spaces, and
- 4) Investigate an incremental approach to a more comprehensive water metering program.¹

Through funding contribution agreements with CBT, the following projects have been completed or are underway:

• Water Meter Assessment - the Village hired Urban Systems to complete a Water Meter Assessment. This report will be used as a tool for Council to make an informed decision regarding the possible implementation of a universal water meter program;

¹ Village of Nakusp Water Smart Action Plan May 2011

- Water Loss Management Plan drafted by Kerr Wood Leidal Consulting Engineers, this plan identifies strategies and recommendations for funding and plan implementation. One of the recommendations was to install a meter at the outlet to the 200,000 gallon reservoir to monitor flows.
- 200,000 Gallon Reservoir Meter the Village installed an insertion meter at the outlet to the 200,000 gallon reservoir. Flows can now be monitored from this reservoir to the distribution system;
- Utility Revenue Requirements Cost of Service & Rates Studies Analysis FCS Group from Seattle is currently working on this analysis. Results should be forthcoming in early 2016. This data will be used to establish water rates and revenue streams to fund the operation and maintenance of the water system, as well as plan and allocate for infrastructure replacement and Capital Asset Management in the future.

The Village will continue to focus on water consumption reduction. The 15% target may be achieved through: the prevention of leakage at the Million Gallon Reservoir and the implementation of the reclaimed water system, which will recover water from the wastewater treatment plant for irrigation of public green-spaces.

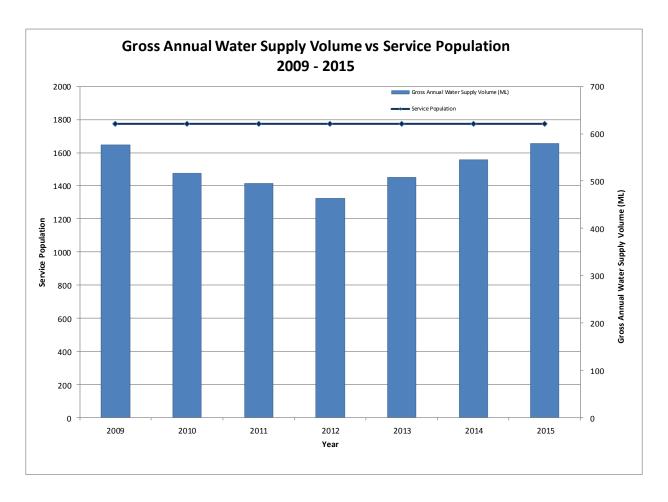
5.0 Challenges & Difficulties – 2015:

Staffing Changes

The Village has experienced a large turn-over in staff (ie. Director of Operations, Chief Financial Officer, Administrative Assistant – Finance Dept., Chief Administrative Officer). The loss of one employee can be difficult, however, the cumulative effect of losing many key members all at the same time causes unique challenges. The Village is positively moving forward through the recruitment of new employees, promotion of eligible staff from within, and the development of a strong management team.

New Plants On-Line

2015 marks the inaugural year for the operation of the new Micro-hydro Generation Station, Water Treatment Plant, and Wastewater Treatment Plant. Staff are busy working the bugs out of each system and determine what the operational and maintenance requirements are.


System Changes

With the dramatic changes in the water collection, treatment and distribution system overall, the Village will need to: complete a new water system assessment; update its Master Water Plan; incorporate emergency procedures from the Groundwater Protection Plan; and, include emergency procedures resulting from the proposed Surface/Source Water Protection Plan, scheduled for 2016.

6.0 Water Consumption:

This year was a very difficult one to manage consumption wise. Despite concerted efforts to decrease consumption, demand actually increased. This can be attributed to hot weather conditions, increased out-door water usage (lawn watering) and continued/increased leakage.

See Appendix D, pg 20, for 2015 results.

7.0 Cross Connection Control Program:

The Village of Nakusp has developed a Cross Connection Control Program, as required by the Drinking Water Protection Act. The purpose of this program is to protect public health, by preventing potential non-potable water sources from cross-contaminating the domestic water supply. This is achieved through the installation, maintenance and inspection of back-flow prevention devices.

Warren Leigh is currently our certified Cross Connection Control Administrator /Inspector and Wes Coleman is our certified Backflow Assembly Tester. Testing of backflow prevention devices is done annually.

8.0 Emergency Response Plan:

The Village has an Emergency Response Plan for the domestic water system. The plan identifies a number of potential emergency situations and sets out guidelines and procedures on how to deal with each issue. The plan will need to be updated to incorporate recommendations from the Groundwater Protection Plan, as well as, any procedures resulting from the proposed Surface/Source Water Protection Plan, 2016.

The contact information is updated annually – see Appendix E, pg 22.

9.0 Proposed Capital Works/Improvements for 2016:

Council is currently considering the following Capital Expenditures for 2016:

• Water Main Replacement, annual \$\\\\ \\$100,000

Total: <u>\$ 100,000</u>

Appendix A – Bacteriological Testing Results

SITE	DATE	Residual	TC	EC
		Cl2	Count	Count /100 ML
Carson's Corner	Feb. 10/15	0.76	L1	L1
	Mar. 24/15	0.53	L1	L1
	May 5/15	0.6	L1	L1
	June 16/15	0.78	L1	L1
	July 23/15	0.54	L1	L1
	September 8/15	0.71	L1	L1
	October 20/15	0.78	L1	L1
	December 8/15	1.03	too long	in transit
	December 15/15	repeat	L1	L1
Sports Complex	Jan. 13/15	0	L1	L1
	Feb. 24/15	0.04	L1	L1
	April 7/15	0.44	L1	L1
	May 19/15	0.05	no p/u	no p/u
	June 30/15	STAT	no p/u	no p/u
	Aug 11/15	0.21	L1	L1
	Sept. 22/15	0.5	L1	L1
	Nov. 3/15	0.36	L1	L1
	Dec. 22/15	0.23	lab c	losed
	Dec. 29/15	0.25	lab c	losed
Crescent Bay Const.	Jan. 20/15	0.3	L1	L1
Orescent Buy Const.	Mar. 3/15	0.42	L1	L1
	April 14/15	0.47	L1	L1
	May 26/15	0.25	L1	L1
	July 7/15	0.6	L1	L1
	Aug 18/15	0.43	L1	L1
	Sept. 29/15	0.53	L1	L1
	Nov. 17/15	0.23	L1	L1
852 Alexander Rd.	Jan. 13/15	0.49	L1	L1
	Feb. 17/15	0.04	L1	L1
	Mar. 31/15	0.44	L1	L1
	May 12/15	0.55	L1	L1
	June 23/15	0.45	L1	L1
	August 4/15	0.7	L1	L1
	September 15/15	0.35	L1	L1
	October 27/15	0.62	L1	L1

	December 15/15		L1	L1
Overwaitea	Jan. 27/15	0.04	L1	L1
	Mar. 10/15	0.51	L1	L1
	April 21/15	0.38	L1	L1
	June 2/15	0.66	L1	L1
	July 14/15	0.36	L1	L1
	August 25/15	0.6	L1	L1
	October 6/15	0.55	L1	L1
	November 24/15	0.26	L1	L1
Esso Station	Feb. 3/15	0.25	L1	L1
	Mar. 17/15	0.45	L1	L1
	April 28/15	0.23	L1	L1
	June 9/15	0.1	L1	L1
	July 21/15	0.13	L1	L1
	Sept. 1/15	0.41	L1	L1
	Oct. 13/15	0.51	L1	L1
	Dec. 1/15	0.38	L1	L1
Marina End Line	Nov. 9/15		L1	L1

Appendix B – Annual Comprehensive Source Water Analysis

SAMPLE ANALYTICAL DATA

REPORTED TO **PROJECT**

Nakusp, Village of Comprehensive

WORK ORDER 5120175 REPORTED

Dec-18-15

Analyte	Result / Recovery	Standard / Guideline	MRL / Limits	Units	Prepared	Analyzed	Notes
Sample ID: WTP - Raw (5120175-01) [Water] Sample	ed: Dec-01-15 09	:05				
Anions							
Chloride	0.12	AO ≤ 250	0.10	mg/L	N/A	Dec-07-15	
Fluoride	0.34	MAC = 1.5	0.10	mg/L	N/A	Dec-07-15	
Nitrate as N	< 0.010	MAC = 10	0.010		N/A	Dec-07-15	HT1
Nitrite as N	< 0.010	MAC = 1	0.010	mg/L	N/A	Dec-07-15	HT1
Sulfate	15.1	AO ≤ 500		mg/L	N/A	Dec-07-15	
General Parameters							
Alkalinity, Total as CaCO3	51	N/A	1	mg/L	N/A	Dec-05-15	
Carbon, Total Organic	0.6	N/A		mg/L	N/A	Dec-02-15	
Colour, True	< 5	AO ≤ 15		CU	N/A	Dec-03-15	
Conductivity (EC)	134	N/A		μS/cm	N/A	Dec-05-15	
Cyanide, Total	< 0.010	MAC = 0.2	0.010		Dec-07-15	Dec-03-15	
pH	7.90	6.5-8.5		pH units	N/A	Dec-07-15	HT2
Sulfide, Total	0.10	AO ≤ 0.05		mg/L	N/A	Dec-03-15	1112
Sunde, rotal Temperature	0.10	AO ≤ 0.05 N/A	0.05	°C	N/A	Dec-07-15	HT
Turbidity	0.1	OG < 0.1	0.1	NTU	N/A	Dec-03-15 Dec-02-15	1112
UV Transmittance @ 254nm	94.3	N/A		% T	N/A	Dec-02-15	
	94.3	IN/A	0.1	70 I	IN//A	DC0-02-13	
Calculated Parameters		N 1/A			N1/0	D 10 15	OTO
Aggresiveness Index	11.4	N/A			N/A	Dec-10-15	CT
Hardness, Total (Total as CaCO3)	60.3	N/A		mg/L	N/A	N/A	OTO
Langelier Index	-0.4	N/A	-5.0		N/A	Dec-10-15	CT
Solids, Total Dissolved	72.1	AO ≤ 500	2.0	mg/L	N/A	N/A	
Total Recoverable Metals							
Aluminum, total	< 0.05	OG < 0.1	0.05	mg/L	Dec-04-15	Dec-04-15	
Antimony, total	< 0.001	MAC = 0.006	0.001	mg/L	Dec-04-15	Dec-04-15	
Arsenic, total	< 0.005	MAC = 0.01	0.005	mg/L	Dec-04-15	Dec-04-15	
Barium, total	< 0.05	MAC = 1	0.05	mg/L	Dec-04-15	Dec-04-15	
Beryllium, total	< 0.001	N/A	0.001	mg/L	Dec-04-15	Dec-04-15	
Boron, total	< 0.04	MAC = 5	0.04	mg/L	Dec-04-15	Dec-04-15	
Cadmium, total	< 0.0001	MAC = 0.005	0.0001	mg/L	Dec-04-15	Dec-04-15	
Calcium, total	21.0	N/A	2.0	mg/L	Dec-04-15	Dec-04-15	
Chromium, total	< 0.005	MAC = 0.05	0.005	mg/L	Dec-04-15	Dec-04-15	
Cobalt, total	< 0.0005	N/A	0.0005	mg/L	Dec-04-15	Dec-04-15	
Copper, total	< 0.002	AO ≤ 1	0.002		Dec-04-15	Dec-04-15	
Iron, total	< 0.10	AO ≤ 0.3		mg/L	Dec-04-15	Dec-04-15	
Lead, total	< 0.001	MAC = 0.01	0.001		Dec-04-15	Dec-04-15	
Magnesium, total	1.9	N/A		mg/L	Dec-04-15	Dec-04-15	
Manganese, total	< 0.002	AO ≤ 0.05	0.002		Dec-04-15	Dec-04-15	
Vercury, total	< 0.00002	MAC = 0.001	0.00002		Dec-06-15	Dec-07-15	
Molybdenum, total	0.001	N/A	0.001		Dec-04-15	Dec-04-15	
Nickel, total	< 0.002	N/A	0.002		Dec-04-15	Dec-04-15	
Phosphorus, total	< 0.2	N/A		mg/L	Dec-04-15	Dec-04-15	
Potassium, total	1.0	N/A		mg/L	Dec-04-15	Dec-04-15	
Selenium, total	< 0.005	MAC = 0.05	0.005	mg/L	Dec-04-15	Dec-04-15	
Silicon, total	7	N/A		mg/L	Dec-04-15	Dec-04-15	

CARO Analytical Services
Rev 2015-11-16

Page 4 of 8

REPORTED TO PROJECT

Nakusp, Village of Comprehensive

WORK ORDER 5120175
REPORTED 5120175
Dec-18-15

Dec-18-15

- Complete isive						Dec-10-	
Analyte	Result / Recovery	Standard / Guideline	MRL / Limits	Units	Prepared	Analyzed	Notes
Sample ID: WTP - Raw (5120175-01) [Water] Sample	ed: Dec-01-15 09	:05, Conti	nued			
Total Recoverable Metals, Continued							
Silver, total	< 0.0005	N/A	0.0005	mg/L	Dec-04-15	Dec-04-15	
Sodium, total	1.8	AO ≤ 200	0.2	mg/L	Dec-04-15	Dec-04-15	
Uranium, total	0.0011	MAC = 0.02	0.0002	mg/L	Dec-04-15	Dec-04-15	
Vanadium, total	< 0.01	N/A	0.01	mg/L	Dec-04-15	Dec-04-15	
Zinc, total	< 0.04	AO ≤ 5		mg/L	Dec-04-15	Dec-04-15	
Microbiological Parameters							
Coliforms, Total	3	MAC = None Detected	1	CFU/100 mL	Dec-02-15	Dec-03-15	MD-2
Background Colonies	11	N/A	1	CFU/100 mL	Dec-02-15	Dec-03-15	
E. coli	1	MAC = None Detected		CFU/100 mL	Dec-02-15	Dec-03-15	
Sample ID: Well #1 - Raw (5120175-	-02) [Water] Sam	pled: Dec-01-15	08:33				
Anions							
Chloride	6.85	AO ≤ 250	0.10	mg/L	N/A	Dec-07-15	
Fluoride	0.14	MAC = 1.5		mg/L	N/A	Dec-07-15	
Nitrate as N	1.17	MAC = 10		mg/L	N/A	Dec-07-15	HT1
Nitrite as N	< 0.010	MAC = 1		mg/L	N/A	Dec-07-15	HT1
Sulfate	5.9	AO ≤ 500		mg/L	N/A	Dec-07-15	
General Parameters	10.00	****				5 05 45	
Alkalinity, Total as CaCO3	148	N/A		mg/L	N/A	Dec-05-15	
Carbon, Total Organic	< 0.5	N/A		mg/L	N/A	Dec-02-15	
Colour, True	< 5	AO ≤ 15		CU	N/A	Dec-03-15	
Conductivity (EC)	321	N/A		μS/cm	N/A	Dec-05-15	
Cyanide, Total	< 0.010	MAC = 0.2	0.010		Dec-07-15	Dec-07-15	
οH	8.00	6.5-8.5		pH units	N/A	Dec-05-15	HT2
Sulfide, Total	< 0.05	AO ≤ 0.05	0.05	mg/L	N/A	Dec-07-15	
Temperature	21	N/A		°C	N/A	Dec-05-15	HT2
Turbidity	< 0.1	OG < 0.1		NTU	N/A	Dec-02-15	
JV Transmittance @ 254nm	98.9	N/A	0.1	% T	N/A	Dec-02-15	
Calculated Parameters							
Aggresiveness Index	12.4	N/A		-	N/A	Dec-10-15	СТ
Hardness, Total (Total as CaCO3)	157	N/A	5.0	mg/L	N/A	N/A	
Langelier Index	0.5	N/A	-5.0		N/A	Dec-10-15	СТ
Solids, Total Dissolved	172	AO ≤ 500		mg/L	N/A	N/A	
Total Recoverable Metals							
Aluminum, total	< 0.05	OG < 0.1	0.05	mg/L	Dec-04-15	Dec-04-15	
Antimony, total	< 0.001	MAC = 0.006	0.001		Dec-04-15	Dec-04-15	
Arsenic, total	< 0.001	MAC = 0.006	0.001		Dec-04-15	Dec-04-15	
Barium, total	0.39	MAC = 1		mg/L	Dec-04-15	Dec-04-15	
	< 0.001	N/A	0.05	mg/L	Dec-04-15 Dec-04-15	Dec-04-15 Dec-04-15	
Beryllium, total Boron, total	< 0.001	MAC = 5	0.001		Dec-04-15	Dec-04-15	
	V.U4						

CARO Analytical Services Rev 2015-11-16

Page 5 of 8

REPORTED TO **PROJECT**

Nakusp, Village of Comprehensive

WORK ORDER REPORTED

5120175 Dec-18-15

Analyte	Result / Recovery	Standard / Guideline	MRL / Limits	Units	Prepared	Analyzed	Notes
Sample ID: Well #1 - Raw (5120175-02	2) [Water] Sam	pled: Dec-01-15	08:33, Co	ntinued			
Total Recoverable Metals, Continued							
Calcium, total	50.6	N/A	2.0	mg/L	Dec-04-15	Dec-04-15	
Chromium, total	< 0.005	MAC = 0.05	0.005	mg/L	Dec-04-15	Dec-04-15	
Cobalt, total	< 0.0005	N/A	0.0005		Dec-04-15	Dec-04-15	
Copper, total	< 0.002	AO ≤ 1	0.002	mg/L	Dec-04-15	Dec-04-15	
Iron, total	< 0.10	AO ≤ 0.3	0.10	mg/L	Dec-04-15	Dec-04-15	
Lead, total	< 0.001	MAC = 0.01	0.001	mg/L	Dec-04-15	Dec-04-15	
Magnesium, total	7.4	N/A	0.1	mg/L	Dec-04-15	Dec-04-15	
Manganese, total	< 0.002	AO ≤ 0.05	0.002	mg/L	Dec-04-15	Dec-04-15	
Mercury, total	< 0.00002	MAC = 0.001	0.00002	mg/L	Dec-06-15	Dec-07-15	
Molybdenum, total	< 0.001	N/A	0.001	mg/L	Dec-04-15	Dec-04-15	
Nickel, total	< 0.002	N/A	0.002	mg/L	Dec-04-15	Dec-04-15	
Phosphorus, total	< 0.2	N/A	0.2	mg/L	Dec-04-15	Dec-04-15	
Potassium, total	1.3	N/A	0.2	mg/L	Dec-04-15	Dec-04-15	
Selenium, total	< 0.005	MAC = 0.05	0.005	mg/L	Dec-04-15	Dec-04-15	
Silicon, total	11	N/A	5	mg/L	Dec-04-15	Dec-04-15	
Silver, total	< 0.0005	N/A	0.0005	mg/L	Dec-04-15	Dec-04-15	
Sodium, total	4.3	AO ≤ 200	0.2	mg/L	Dec-04-15	Dec-04-15	
Uranium, total	0.0016	MAC = 0.02	0.0002	mg/L	Dec-04-15	Dec-04-15	
Vanadium, total	< 0.01	N/A	0.01	mg/L	Dec-04-15	Dec-04-15	
Zinc, total	< 0.04	AO ≤ 5	0.04	mg/L	Dec-04-15	Dec-04-15	
Microbiological Parameters							
Coliforms, Total	< 1	MAC = None Detected	1	CFU/100 mL	Dec-02-15	Dec-03-15	
Background Colonies	< 1	N/A	1	CFU/100 mL	Dec-02-15	Dec-03-15	
E. coli	< 1	MAC = None Detected	1	CFU/100 mL	Dec-02-15	Dec-03-15	
Sample ID: Well #2 - Raw (5120175-03	3) [Water] Sam	pled: Dec-01-15	08:30 To [Dec-15-15 08:	30		
Anions	120,000				2772		
Chloride	6.59	AO ≤ 250		mg/L	N/A	Dec-16-15	
Fluoride	0.17	MAC = 1.5		mg/L	N/A	Dec-16-15	
Nitrate as N	0.909	MAC = 10	0.010		N/A	Dec-16-15	
Nitrite as N	< 0.010	MAC = 1	0.010		N/A	Dec-16-15	
Sulfate	6.3	AO ≤ 500	1.0	mg/L	N/A	Dec-16-15	
General Parameters							
Alkalinity, Total as CaCO3	123	N/A	1	mg/L	N/A	Dec-17-15	
Carbon, Total Organic	< 0.5	N/A	0.5	mg/L	N/A	Dec-02-15	
Colour, True	< 5	AO ≤ 15	5	CU	N/A	Dec-17-15	

260

< 0.010

< 0.020

< 0.05

7.83

< 0.05

N/A

MAC = 0.2

N/A

N/A

6.5-8.5

AO ≤ 0.05

2 μS/cm

0.010 mg/L

0.020 mg/L

0.05 mg/L

0.05 mg/L

0.01 pH units

N/A

Dec-17-15

N/A

Dec-03-15

N/A

Dec-18-15

Dec-17-15

Dec-18-15

Dec-06-15

Dec-04-15

Dec-17-15

Dec-18-15

CARO Analytical Services Rev 2015-11-16

Sulfide, Total

Conductivity (EC)

Ammonia as N, Total

Nitrogen, Total Kjeldahl

Cyanide, Total

Page 6 of 8

HT2

REPORTED TO PROJECT

Nakusp, Village of Comprehensive

WORK ORDER 5120175 REPORTED

Dec-18-15

Analyte	Result /	Standard /	MRL / Units	Prepared	Analyzed	Notes
	Recovery	Guideline	Limits			

Sample ID: Well #2 - Raw (5120175-03) [Water] Sampled: Dec-01-15 08:30 To Dec-15-15 08:30, Continued

General Parameters, Continued							
Temperature	19	N/A		°C	N/A	Dec-17-15	HT2
Turbidity	1.2	OG < 0.1	0.1	NTU	N/A	Dec-16-15	
UV Transmittance @ 254nm	99.0	N/A	0.1	% T	N/A	Dec-17-15	
Calculated Parameters							
Aggresiveness Index	12.0	N/A		-	N/A	Dec-18-15	
Hardness, Total (Total as CaCO3)	128	N/A	5.0	mg/L	N/A	N/A	
Langelier Index	0.2	N/A	-5.0	-	N/A	Dec-18-15	
Nitrogen, Organic	< 0.05	N/A	0.05	mg/L	N/A	N/A	
Solids, Total Dissolved	145	AO ≤ 500	2.0	mg/L	N/A	N/A	
Total Recoverable Metals							
Aluminum, total	< 0.05	OG < 0.1	0.05	mg/L	Dec-04-15	Dec-04-15	
Antimony, total	< 0.001	MAC = 0.006	0.001		Dec-04-15	Dec-04-15	
Arsenic, total	< 0.005	MAC = 0.01	0.005	mg/L	Dec-04-15	Dec-04-15	
Barium, total	0.27	MAC = 1	0.05	mg/L	Dec-04-15	Dec-04-15	
Beryllium, total	< 0.001	N/A	0.001	mg/L	Dec-04-15	Dec-04-15	
Boron, total	< 0.04	MAC = 5	0.04	mg/L	Dec-04-15	Dec-04-15	
Cadmium, total	< 0.0001	MAC = 0.005	0.0001	mg/L	Dec-04-15	Dec-04-15	
Calcium, total	41.7	N/A	2.0	mg/L	Dec-04-15	Dec-04-15	
Chromium, total	< 0.005	MAC = 0.05	0.005	mg/L	Dec-04-15	Dec-04-15	
Cobalt, total	< 0.0005	N/A	0.0005	mg/L	Dec-04-15	Dec-04-15	
Copper, total	< 0.002	AO ≤ 1	0.002	mg/L	Dec-04-15	Dec-04-15	
ron, total	< 0.10	AO ≤ 0.3	0.10	mg/L	Dec-04-15	Dec-04-15	
_ead, total	< 0.001	MAC = 0.01	0.001	mg/L	Dec-04-15	Dec-04-15	
Magnesium, total	5.9	N/A	0.1	mg/L	Dec-04-15	Dec-04-15	
Manganese, total	< 0.002	AO ≤ 0.05	0.002	mg/L	Dec-04-15	Dec-04-15	
Mercury, total	< 0.00002	MAC = 0.001	0.00002	mg/L	Dec-06-15	Dec-07-15	
Molybdenum, total	< 0.001	N/A	0.001	mg/L	Dec-04-15	Dec-04-15	
Nickel, total	< 0.002	N/A	0.002	mg/L	Dec-04-15	Dec-04-15	
Phosphorus, total	< 0.2	N/A	0.2	mg/L	Dec-04-15	Dec-04-15	
Potassium, total	1.2	N/A		mg/L	Dec-04-15	Dec-04-15	
Selenium, total	< 0.005	MAC = 0.05	0.005	mg/L	Dec-04-15	Dec-04-15	
Silicon, total	11	N/A	5	mg/L	Dec-04-15	Dec-04-15	
Silver, total	< 0.0005	N/A	0.0005	mg/L	Dec-04-15	Dec-04-15	
Sodium, total	4.1	AO ≤ 200		mg/L	Dec-04-15	Dec-04-15	
Jranium, total	0.0011	MAC = 0.02	0.0002	mg/L	Dec-04-15	Dec-04-15	
/anadium, total	< 0.01	N/A	0.01	mg/L	Dec-04-15	Dec-04-15	
Zinc, total	< 0.04	AO ≤ 5	0.04	mg/L	Dec-04-15	Dec-04-15	
Microbiological Parameters							
Coliforms, Total	< 1	MAC = None Detected	1	CFU/100 mL	Dec-02-15	Dec-03-15	
Background Colonies	< 1	N/A	1	CFU/100 mL	Dec-02-15	Dec-03-15	
E. coli	< 1	MAC = None Detected	1	CFU/100 mL	Dec-02-15	Dec-03-15	

CARO Analytical Services Rev 2015-11-16

Page 7 of 8

REPORTED TO PROJECT

Nakusp, Village of Comprehensive

WORK ORDER REPORTED 5120175 Dec-18-15

Analyte	Result /	Standard /	MRL / Units	Prepared	Analyzed	Notes
	Recovery	Guideline	Limits			

Sample / Analysis Qualifiers:

CT6 Results were based on lab temperature & lab pH.

HT1 The sample was prepared / analyzed past the recommended holding time.

HT2 The 15 minute recommended holding time (from sampling to analysis) has been exceeded - field analysis is

recommended.

MD-2 Test method deviation - Total Coliform and E.coli analysis were run using Chromocult Coliform Agar, results

are estimates.

CARO Analytical Services Rev 2015-11-16

Page 8 of 8

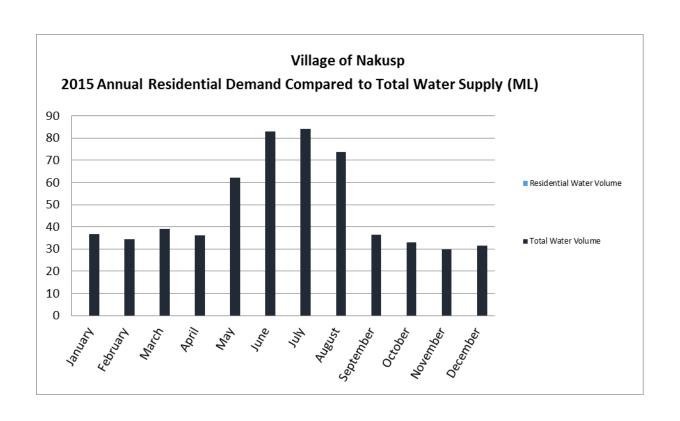
Appendix C – 2015 Trihalomethane (THM) Results

Each water sample is tested for: Bromodichloromethane; Bromoform; Chloroform; and Dibromochloromethane. Results are reported in mg/L. The method reporting limit for each compound is less than 0.001 mg/L. Only results exceeding 0.001 mg/L are shown below:

DATE	SITE	BROMODICHLORO	BROMOFORM	CHLOROFORM	DIBROMO-	TOTAL
		METHANE			CHLOROMETHAN	THM
					Е	
Jan.6	Alexander Rd	<0.001	< 0.001	0.038	< 0.001	0.038
Feb. 3	Esso Station	<0.001	< 0.001	0.043	< 0.001	0.043
Mar. 3	Crescent Bay Construction	0.001	< 0.001	0.011	< 0.001	0.012
Apr. 7	Sports Complex	<0.001	<0.001	0.01	<0.001	0.01
May-05	Carson's Corner		sample d	estroyed in transi	t	
Jun. 2	Overwaitea Foods	<0.001	<0.001	< 0.001	<0.001	< 0.004
Jul-07	Crescent Bay Construction	0.001	< 0.001	0.002	< 0.001	0.003
Aug-04	Alexander Rd	<0.001	< 0.001	0.035	< 0.001	0.035
Sep-01	Esso Station	0.001	<0.001	0.002	<0.001	< 0.004
Oct-06	Overwaitea Foods	<0.001	<0.001	< 0.001	<0.001	< 0.004
Nov-03	Sports Complex	<0.001	<0.001	<0.001	<0.001	< 0.004
Dec-01	Esso Station	0.001	<0.001	0.025	<0.001	0.026

Appendix C - 2015 Haloacetic Acid (HAA) Results

Another major group of chlorinated disinfection by-products found in drinking water, besides Trihalomethanes, are Haloacetic Acids. Together they can be used as indicators for the presence of all chlorinated disinfection by-products. The Maximum Allowable Concentration of HAAs is 80 micrograms/Litre.


DATE	SITE	Monochloroacetic acid (MCA)	Dichloroacetic acid (DCA)	Trichloroacetic acid (TCA)	Monobromoacetic Acid (MBA)	Dibromoacetic Acid (DBA)	Total HAA5
Jan. 6	Alexander Rd**	<0.002	0.018	0.028	<0.002	<0.002	0.046
Apr. 7	Sports Complex	< 0.002	0.006	0.007	< 0.002	< 0.002	0.013
Jul-07	Crescent Bay	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Oct. 6	Overwaitea	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002

Appendix D – Water Consumption Data

2015		GRAVITY SYSTEM										
MO/YR	DAYS/ MO	MAX DAY cu. m	DAY OF MO	MIN DAY cu. m	DAY OF MO	READING @ START OF MO	READING @ END OF MO	READING FOR MONTH cu. m	DAILY AVG cu. m			
JAN/15	31	1,387	16	378	8	692,789	715,328	22,539	727			
FEB/15	28	1,434	6	17	13	715,328	734,318	18,990	678			
MAR/15	31	968	13	3	10	734,318	743,527	9,209	297			
APR/15	30	1,121	11	10	2	743,527	767,997	24,470	816			
MAY/15	31	1,436	24	464	31	767,997	796,730	28,733	927			
JUN/15	30	1,472	18	444	4	796,730	827,456	30,726	1024			
JUL/15	31	1,448	3	455	27	827,456	852,540	25,084	809			
AUG/15	31	1,006	10	141	30	852,540	872,896	20,356	657			
SEP/15	30	1,279	13	246	2	872,896	887,696	14,800	493			
OCT/15	31	622	18	242	14	887,696	898,988	11,292	364			
NOV/15	30	527	24	302	19	898,988	912,174	13,186	440			
DEC/15	31	571	28	306	3	912,174	926,412	14,238	459			
Totals	365							233,623	641			

WELL #1 SYSTEM										
DAYS RUNNING	MAX DAY	DAY OF MO	MIN DAY	DAY OF MO	READING @ START OF MO	READING @ START OF NEXT MO	READING FOR MONTH M3	DAILY AVG		
25	851	13	49	29	692,168	706,341	14,173	567		
21	1981	13	111	2	706,341	720,178	13,837	659		
3	333	27	2	23	720,178	720,519	341	114		
27	1266	1	28	11	720,519	731,069	10,550	391		
14	938	26	9	12	731,069	735,966	4,897	350		
16	422	29	1	3	735,966	739,488	3,522	220		
21	648	9	125	23	739,488	745,679	6,191	295		
14	263	12	90	17	745,679	748,126	2,447	175		
18	938	15	11	13	748,126	760,917	12,791	711		
31	918	8	456	28	760,917	782,453	21,536	695		
30	686	3	385	4	782,453	799,105	16,652	555		
31	704	1	428	20	799105	816,369	17,264	557		
251							124201	441		

WELL #2 SYSTEM									SYSTEMS COMBINED	SYSTEMS COMBINED
DAYS RUNNING	MAX DAY cu. m	DAY OF MO	MIN DAY cu. m	DAY OF MO	READING @ START OF MO	READING @ START OF NEXT MO	READING FOR MONTH M3	DAILY AVG cu. m	GRAVITY PLUS WELLS (DAILY AVG) cubic meters	COMBINED FLOWS 2015 cubic meters
3	106	8	3	9	99,241	99,358	117	39	1333	36829
6	676	27	6	13	99,358	100,970	1,612	269	1606	34439
31	1797	10	319	4	100,970	130,447	29,477	951	1362	39027
9	486	30	2	15	130,447	131,474	1,027	114	1321	36047
28	1695	21	21	5	131,474	159,935	28,461	1016	2293	62091
30	2080	9	951	3	159,935	208,820	48,885	1630	2874	83133
31	2387	4	1231	3	208,820	261,611	52,791	1703	2807	84066
31	2419	14	862	31	261,611	312,495	50,884	1641	2473	73687
10	1073	4	292	10	312,495	321,382	8,887	889	2093	36478
2	102	25	1	10	321,382	321,485	103	52	1110	32931
1	100	24	100	24	321,485	321,585	100	100	1095	29938
2	23	1	17	16	321585	321,625	40	20	1036	31542
184							222384	702	1,783	580208

Appendix E – ERP Contact Information

Up-dated December 2015

Emergency Agency	Contact Person	Phone # (250)	Cell No. (250)	Emerg. # (250)	Fax # (250)	
Fire Dept/Police/Ambulance	Emergencies Only			9-1-1		
Village of Nakusp: Main Office	Laurie Taylor, CAO	265-3689	265-1727		265-3788	
Public Works Yard	Warren Leigh, Ops Director	265-3556	265-1725	265-3861	265-3262	
Fire Chief	Terry Warren	265-3563	265-1756	9-1-1	265-3571	
** Emergency Coordinator	Terry Warren	265-0230	265-1920		265-3571	
Drinking Water Officer	Dan Byron	420-2240	421-3471	866-457-5648	426-3022	
Well Pump Installation & Repair	Mearls - Greg Anderson	763-0109	212-4806		763-5466	
BC Hydro	Power Outage: 1-888-769-3766	Emergency:	1-877-520-1	355		
Bottled Water Supplier	Crystal Clear Water	265-1874				
Bulk Water Hauler - Kamloops	Diamond C Ventures Ltd.	374-1314				
Environmental Protection Service		354-6333	1-800-663-	3456		
Excavation Services	Arrow Lakes Ready Mix	265-4615	265-1146			
Extended Care Facility (Halcyon)	Robin Hicks, Site Mgr.	265-3692 265-8546		265-1187	265-4141	
Health Clinic	Linda Nero	265-3608 ext 2			265-3104	
Nelson Health Unit Office	1-877-221-3388	505-7200	505-7200		505-7211	
Medical Health Officer, office hrs	250-420-2240	Drinking Water Specialist – Dan Byron				
Medical Health Officer, After Hrs	1-866-457-5648					
Municipal Project Manager						
Newspaper	Arrow Lakes News	265-3841				
Plumbing Services	Dave's Plumbing	265-2113 265-1760				
Public Health Engineer	Marianne Crowe	505-7200		866-457-5648	505-7211	
Radio Station	Easy Rock	352-5510			352-9189	
RCMP - Nakusp Detachment	Debra McCoy	265-3677 or 265-3678		9-1-1	265-4292	
School District No. 10	Art Olson, Ops. Manager	265-3638 265-1075 ext.3331			265-3701	
Arrowtarian Rotary Villa	Trish Cannon	265-2020	265-4652 Earl	265-1886	265-4355	
Spill Reporting for BC	1-800-663-3456	Environmental Protection: Veron N		n: Veron No	vosad	
TV Station	Local Channel 13	265-3733			837-2900	
Water Stewardship Office	354-6333 Thomas Cummings	ı	ı	I	I.	